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Abstract
In this article, we present an analysis of electromagnetic wave propagation in a parallel-plate waveguide filled with (a) a conventional (linear,

homogeneous and isotropic) dielectric medium (b) metamaterial. In this connection, we derive the dispersion relations for the TE and TM wave
modes for both cases. The dispersion characteristics of the waves are obtained by the numerical analysis of the dispersion relation by plotting
it for the propagation frequency versus the wave vector for different values of the dimensions of the waveguide and the number of modes. The
dispersion characteristics show propagation and non-propagation regions in the microwave frequency range. This effect can be used for different
waveguide applications e.g., filters, sensors etc.
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1. Introduction

In recent years, the field of metamaterials (MTMs) has gar-
nered significant attention due to their unique electromagnetic
properties that can be tailored for specific applications [1–5].
One of the most promising applications of metamaterials is in
the design of waveguides for high-frequency communication
systems [6–10]. Metamaterials are engineered materials with
unique electromagnetic properties that are not found in natu-
ral materials. They are designed by arranging subwavelength
building blocks in a specific pattern to achieve the desired prop-
erties. Metamaterials can exhibit unusual properties such as
negative refraction, cloaking, and super-resolution, which have
potential applications in various fields including telecommuni-
cations [11–14]. The well-known types of metamaterials are
double negative (DNG) and single negative (SNG) metamateri-
als. Double negative metamaterials (DNG-MTMs), also known
as left-handed metamaterials [15, 16], consist of a composite
of two materials, one with negative permittivity and the other
with negative permeability. The idea of left-handed metama-
terials was developed theoretically by Veselago [16] in 1968.
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Later, Pendry et al. [17–19], Smith et al. [20], and Shelby
et al. [21] experimentally realized the artificial negative per-
mittivity and permeability by constructing a composite medium
in microwave frequency band based on a periodic array of in-
terspaced conducting split-ring resonators and long continuous
metallic wires. This combination results in a negative refrac-
tive index and allows light to propagate in a direction oppo-
site to that in natural materials. Single negative metamaterials
(SNG-MTMs) are categorized in two categories, the materials
with negative permittivity and positive permeability are termed
as the epsilon negative metamaterials (ENG-MTMS), whereas
materials with positive permittivity and negative permeability
are called mu-negative metamaterials (MNG-MTMs). SNG-
MTMs are typically easier to fabricate than double negative
metamaterials, and they have potential applications [22, 23].

Parallel-plate waveguides (PPWGs) are a common type of
waveguide used in the transmission of electromagnetic waves.
By filling the PPWG with a metamaterial, the propagation of
the waves can be controlled and manipulated in ways not pos-
sible with conventional materials. This has opened up new pos-
sibilities for the design of waveguides with improved perfor-
mance (see e.g. [22] and references therein). In recent years,
some research work is reported for the high-frequency electro-
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magnetic wave propagation in MTM based waveguides [6–15].
In this connection, Zamir and Ali [24] investigated the change
in propagation properties of a nonlinear MTM filled PPWG by
replacing the perfect-conducting plates to high- temperature su-
perconductor parallel plates. They reported some new and dif-
ferent aspects of the wave propagation properties which were
not present in a conventional PPWG. In this research paper,
we will theoretically investigate the propagation properties of
a parallel-plate waveguide filled with linear metamaterials and
explore the potential applications of this technology in high-
frequency communication systems.

2. Theoretical analysis

In this paper, we study the electromagnetic wave propaga-
tion in a PPWG filled with linear MTMs. A schematic represen-
tation of the proposed waveguide structure is shown in Figure
(1). Consider an electromagnetic wave is propagating through
a parallel-plate waveguide loaded with a DNG-MTM along z-
axis with profile ei(ωt−kz), as shown in Figure (1). Here, ω is
the propagation frequency of the electromagnetic wave and k is
the propagation constant. The parallel-plates are extended in-
finitely in yz-plane, whereas the separation between the plates
id a.

Figure 1: A PPWG filled with linear MTMs

A DNG-MTM is characterized by its simultaneously nega-
tive permittivity and permeability in a certain range of propaga-
tion frequency, given by the following relative functions:

εDNG (ω) = 1 −
ω2

p

ω2 (1)

µDNG (ω) = 1 −
Fω2

ω2 − ω2
r

(2)

where ωp is the plasma frequency, ωr is the resonance fre-
quency and F is the filling factor[20]. Here, without loss of
generality, the damping terms are not considered [25]. The
field profile for transvers electric (TE) waves have the form

(Hx, Ey,Hz)ei(ωt−kz). To obtain the electromagnetic wave equa-
tion for the DNG-MTM, we first take the Maxwell field equa-
tions as

∇ × H = iωε◦εDNG (ω)E (3)

∇ × E = −iωµ◦µDNG (ω)H (4)

For the case of TE wave mode, Equations (3) and (4) have been
used to obtain the following wave equation for Ey:

d2Ey

dx2 + k2
◦εDNG (ω)Ey − k2Ey = 0 (5)

where K2
◦ =

ω2

c2 . The solution of the above wave equation is
given by

Ey = c1sin kDNG x + c2 cos kDNG x (6)

Here kDNG =
[
k2
◦εDNG (ω)µDNG (ω) − k2

]1/2
. c1 and c2 are arbitrary

constants and can be evaluated from the boundary conditions.
Solution in Eq. (4) is used in Equation (4) to derive the follow-
ing field components for TE-mode:

Hx =
−k

ωµDNG (ω)µ◦
(c1sin kDNG x + c2 cos kDNG x) (7)

Hz =
ikDNG

ωµDNG (ω)µ◦
(c1cos kDNG x − c2 sin kDNG x) (8)

A similar mathematical treatment can be performed to derive
the wave equation in Hy for TM-mode to obtain the following
solution:

Hy = c3 sin kDNG x + c4 cos kDNG x (9)

where c3 and c4 are arbitrary constants and can be evaluated
from the boundary conditions. Solution in Equation (9) is used
in Equation (9) to derive the following field components for
TE-mode:

Ex =
−k

ωε◦εDNG (ω)
(c3 sin kDNG x + c4 cos kDNG x) (10)

Ez =
ikDNG

ωε◦εDNG (ω)
(c3 cos kDNG x + c4 sin kDNG x) (11)

2.1. The dispersion relation

To find the dispersion relation for the TE and TM waves, we
employ the following boundary conditions for the continuity on
the field components at x = 0 :

TE Waves :

Ey|x=0

Ey|x=d
(12)

TM Waves :

Hy|x=0

Hy|x=d
(13)
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Using the values of Ey from Eq. (6) to Eq. (12), we obtain the
following dispersion relation for TE mode:

k2 = k2
◦εDNG (ω)µDNG (ω) − n2π2/a2 (14)

where n = 1, 2, 3, . . . , known as number of modes. Similarly,
using the values of Hy from Eq. (9) to Eq. (13), we obtain the
dispersion relation for TM-mode which is exactly the same as
given in Eq. (14).

2.2. Case of MNG-MTM
For the case of a PPWG loaded with MNG-MTM, we con-

sider positive value of nonlinear permittivity i.e. εMNG (not a
function of frequency) and frequency dependent negative per-
meability µMNG (ω) = 1 − ω2

mp/ω
2, where ωmp is the magnetic

plasma frequency for MNG-MTM [26–28]. Therefore Eq. (5)
can be written as

d2Ey

dx2 + k2
◦εMNGµMNG (ω)Ey − k2Ey = 0 (15)

and the solution of Eq. (6) becomes

Ey = c5 sin kMNG x + c6 cos kMNG x (16)

where kMNG =
[
k2
◦εMNGµMNG (ω) − k2

]1/2
. The corresponding mag-

netic field components for TE-mode i.e. Hx and Hz are obtained
from Eq. (4) and these are given by

Hx =
−k

ωµMNG (ω)µ◦
(c5 sin kMNG x + c6 cos kMNG x) (17)

Hz =
ikMNG

ωµMNG (ω)µ◦
(c5 cos kMNG x + c6 sin kMNG x) (18)

Similarly, for TM-mode, the corresponding field components
are given by

Hy = c7 sin kMNG x + c8 cos kMNG x (19)

Ex =
−k

ωε◦εMNG

(c7 sin kMNG x + c8 cos kMNG x) (20)

Ez =
ikMNG

ωε◦εMNG

(c7 cos kMNG x + c8 sin kMNG x) (21)

In this case, the following dispersion relation is obtained, for
both TE and TM-modes, by applying the boundary conditions
on Eq. (12) and (13) to Eqns. (16) and (19)

k2 = k2
◦εMNGµMNG (ω) − n2π2/a2 (22)

2.3. Case of ENG-MTM
For the case of PPWG loaded with an ENG-MTM, we con-

sider frequency dependent negative permittivity i.e., εENG (ω) =
1 − ω2

ep/ω
2, and a constant positive value of permeability µENG

, where ωep is the electron plasma frequency for ENG-MTM
[26–28]. Therefore, Eq. (5) can be written as

d2Ey

dx2 + k2
◦εENG (ω)µENG Ey − k2Ey = 0 (23)

and the solution in Eq. (6) becomes

Ey = c9 sin kENG x + c10 cos kENG x (24)

where kENG =
[
k2
◦εENG (ω)µENG − k2

]1/2
. The corresponding mag-

netic field components for TE-mode i.e., Hx and Hz are ob-
tained from Eq. (4) and these are given by

Hx =
−k

ωµENGµ◦
(c9 sin kENG x + c10 cos kENG x) (25)

Hz =
ikENG

ωµENGµ◦
(c9 cos kENG x + c10 sin kENG x) (26)

Similarly, for TM-mode, the corresponding field components
are given by

Hy = c11 sin kENG + c12 cos kENG x (27)

Ex =
−k

ωε◦εENG (ω)
(c11 sin kENG x + c12 cos kENG x) (28)

Ez =
ikENG

ωε◦εENG (ω)
(c11 cos kENG x + c12 sin kENG x) (29)

In this case, the following dispersion relation is obtained, for
both TE and TM-modes, by applying the boundary conditions
on Eq. (12) and (13) to Eqns. (24) and (27)

k2 = k2
◦εENGµENG (ω) − n2π2/a2 (30)

2.4. Case of conventional PPWG
For the case of PPWG loaded with a conventional dielectric

material, the permittivity and permeability have constant values
i.e., εc and µc. Therefore, Eq. (5) can be written as

d2Ey

dx2 + k2
◦εENG (ω)µENG Ey − k2Ey = 0 (31)

and the solution of Eq. (6) becomes

Ey = c13 sin kcx + c14 cos kcx (32)

where kc =
[
k2
◦εcµc − k2

]1/2
. The corresponding magnetic field

components for TE-mode i.e. Hx and Hz are obtained from Eq.
(4) and these are given by

Hx =
−k
ωµcµ◦

(c13 sin kcx + c14 cos kcx) (33)

Hz =
ikc

ωµcµ◦
(c13 cos kcx − c14 sin kcx) (34)

Similarly, for TM-mode, the corresponding field compo-
nents are given by

Hy = c15 sin kcx + c16 cos kcx (35)

Ex =
−k
ωε◦εc

(c15 sin kcx + c16 cos kcx) (36)

Ez =
ikc

ωε◦εc
(c15 cos kcx − c16 sin kcx) (37)

In this case, the following dispersion relation is obtained, for
both TE and TM-modes, by applying the boundary conditions
in Eq. (12) and (13) to Eqns. (32) and (35)

k2 = k2
◦εcµc − n2π2/a2 (38)
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3. Numerical Analysis

In this section, we numerically analyze the dispersion rela-
tions by plotting the propagation constant against the frequency
for the wave propagation in our proposed PPWGs. In this con-
nection, we plot and discuss the dispersion diagrams for the TE
and TM waves in both (i) conventional parallel-plate waveguide
and (ii) parallel-plate waveguide filled with metamaterials. Be-
fore going into the details of the dispersion diagrams, first we
have to find the frequency ranges in which (i) a DNG material
has simultaneously negative values of permittivity and perme-
ability (ii) an ENG material has negative value of permittivity
(iii) a MNG material has negative value of permeability.

3.1. Frequency bands for metamaterials
To find the existence frequency bands for DNG and MNG-

MTMs, we plot the permittivity and permeability of each mate-
rial against the propagation frequency. In this connection, con-
sider the relative permeability and permittivity for ENG-MTM
as

µENG = 1.2 , εENG = 1 −
ω2

ep

ω2 (39)

εMNG = 3 , εMNG = 1 −
ω2

mp

ω2 (40)

where, the parameter values chosen for both ωep and ωmp is 10
GHz [26]. Further, for the DNG-MTM, we plot Eq. (1) and (2)
for the parameters F = 0.56,ωr = 4× 109Hz and ωp = 10× 109

Hz [20, 29]. Fig. 2 shows a plot of permittivity and perme-
ability versus the propagation frequency for a DNG-MTM. The
graph shows that the frequency range in which both permittiv-
ity and permeability have simultaneously negative values ex-
tends from 4 × 109 Hz to 6 × 109 Hz, called frequency band
for the existence of a DNG-MTM. Fig. 3 shows a plot of per-

Figure 2: Plot of permittivity/permeability and frequency for a
DNG-MTM

mittivity and permeability versus the propagation frequency for
an ENG-MTM. The graph shows that the frequency range in
which permittivity has negative value extends from 2.75 × 109

Hz to 12 × 109 Hz, called frequency band for the existence of
an ENG-MTM. Fig. 4 shows a plot of permittivity and perme-
ability versus the propagation frequency for a MNG-MTM. The
graph shows that the frequency range in which permeability has

negative value extends from 3.5×109 Hz to 10×109 Hz, called
frequency band for the existence of an MNG-MTM.

Figure 3: Plot of permittivity/permeability and frequency for a
ENG-MTM

Figure 4: Plot of permittivity/permeability and frequency for a
DNG-MTM

3.2. Dispersion characteristics

Table (1) shows the propagation conditions for the various
materials used in our proposed PPWG. Case (a) shows that the
permittivity and permeability of the medium is positive and
therefore defines a right-handed or double positive material.
For this case, the range of frequency considered to be in the
microwave range from 109 Hz to 1012 Hz. In this case, the dis-
persion relation is k =

√
k2
◦εcµc − n2π2/a2 as given in Eq. (38).

Here, k is real for k2
◦εcµc >

(
nπ
a

)2
which represents the prop-

agation of electromagnetic waves, whereas k is imaginary for
k2
◦εr(ω)µr(ω) < n2π2/a2, which represents the non-propagation

of electromagnetic waves. Therefore, we can define a cut-off
frequency separating the frequency band into propagation and
non-propagation regions, i.e., k2

◦εcµc = n2π2/a2 for ω = ωc,
k2
◦εcµc > n2π2/a2 for ω > ωc, and k2

◦εcµc < π
2/a2 for ω < ωc,

where ωc = cnπ/a
√
εcµc is the cut-off frequency.

Fig. 5 shows a plot of dispersion relation (38) for k versus
ω for a fix value of waveguide dimension (i.e., a = 3 × 10−3 m)
and for different number of modes (i.e., n = 1, 2, 3, . . .). This
graph shows that the propagation region of the electromagnetic
waves is above a certain frequency (i.e. cut-off frequency) for
each mode. The propagation characteristics are sensitive to the
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Table 1: Different cases for the permittivity and permeability of the Metamaterial

Cases
Permittivity
εr(ω)

Permeability
µr(ω)

Product
εr(ω)µr(ω) Range Propagation Non-propagation

a εr(ω) > 0 µr(ω) > 0 εr(ω)µr(ω) > 0 109 − 1012 ω > ωc ω < ωc

b εr(ω) > 0 µr(ω) < 0 εr(ω)µr(ω) < 0 3.5 × 109 − 10 × 109 Never -
c εr(ω) < 0 µr(ω) > 0 εr(ω)µr(ω) < 0 2.75 × 109 − 12 × 109 Never -
d εr(ω) < 0 µr(ω) < 0 εr(ω)µr(ω) > 0 4 × 109 − 6 × 109 Never -

number of modes. The waveguide shows propagation in the
upper region of the microwave band and there is no propagation
for the lower region of the microwave band. Therefore, the
parallel-plate waveguide filled with a double positive material
(DPS-MTM) can be used as a high-pass filter etc.

Figure 5: Dispersion diagram i.e. a plot of ω versus k for sepa-
ration a = 3 × 10−3 m and for number of modes n = 1, 2, 3.

Figure 6: Dispersion diagram for separation a = 2 × 10−3 m
and for number of modes n = 1, 2, 3. equation

Fig. 6 shows a plot of dispersion relation (38) for k versus
ω for a fix value of plate separation (i.e., a = 2 × 10−3m) and
for different number of modes (i.e., n = 1, 2, 3, . . .). This graph
shows the similar trends as discussed for Fig. 5. But here, the
propagation characteristics are more sensitive to the number of
modes. Further, the cut-off frequency for each mode is also dif-
ferent from the Fig. 5. The waveguide shows propagation in
the upper region of the microwave band (i.e. from 109 Hz to
1012 Hz) and there is no propagation for the lower region of

Figure 7: Dispersion diagram for separation a = ×10−3 m and
for number of modes n = 1, 2, 3.

the microwave band. Same is the case with Fig. 7, which is
a plot of dispersion relation (38) for k versus ω for a fix value
of plate separation (i.e., a = 10−3 m) and for different number
of modes (i.e. n = 1, 2, 3, . . .). This graph shows the simi-
lar trends as discussed for Fig. 5 and 6. But here again, the
propagation characteristics are more sensitive to the number of
modes. Further, the cut-off frequency for each mode is also dif-
ferent from the Fig. 5 and 6. The waveguide shows propagation
in the upper region of the microwave band (i.e. from 109 Hz to
1012 Hz) and there is no propagation for the lower region of
the microwave band. Therefore, one can choose the thickness
to use the parallel-plate waveguide for the particular choice of
high pass filter etc.

Figure 8: Dispersion diagram of νφ2/c2 versus ω for separation
a = 3 × 10−3 m and for number of modes n = 1, 2, 3.

Case (b) and (c) show the propagation properties of the
electromagnetic waves in MNG-MTM and ENG-MTM, respec-
tively. Since, for an MNG-MTM, εMNG > 0 and µMNG (ω) < 0,
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for which εMNGµMNG (ω) < 0, therefore, in the dispersion rela-

tion, k =
√

k2
◦εMNGµMNG (ω) − n2π2/a2, k is always imaginary

for this region within the frequency band of an MNG-MTM.
Hence, electromagnetic waves cannot propagate in a parallel-
plate waveguide filled with an MNG-MTM. Similarly, for an
ENG-MTM, εENG (ω) < 0 and µENG > 0, for which εENG (ω)µENG <

0, so, in the dispersion relation, k =
√

k2
◦εENGµENG (ω) − n2π2/a2,

k is always imaginary for this region within the frequency band
of an ENG-MTM. Hence, electromagnetic waves cannot prop-
agate in a parallel-plate waveguide filled with an ENG-MTM.

Case (d) represents the propagation characteristics of the
electromagnetic waves in DNG-MTM Since, for a DNG-MTM,
εDNG (ω) < 0 and µDNG(ω) < 0 for which εDNG (ω)µDNG (ω) > 0.

In dispersion relation, k =
√

k2
◦εDNGµDNG (ω) − n2π2/a2, the fre-

quency at which propagation may occur, does not exist in the
existence band of a DNG-MTM (i.e., 4× 109 Hz to 6× 109 Hz)
for the value of PPWG thicknesses a < 10mm. For the fre-
quency range of simultaneous negative values of permittivity
and permeability, the dispersion relation (14) does not show the
region of propagation for different values of PPWG thickness
a and for different values of modes n. Hence, electromagnetic
waves cannot propagate in a parallel-plate waveguide filled with
a DNG-MTM with the mentioned parameters. To show this
finding, we present a graph of dispersion relation (14) for the
normalized squared phase velocity ν2φ/c

2 against the propaga-
tion frequency ω, within the frequency band of a DNG-MTM
i.e., from 4×109 Hz to 6×109 Hz, as shown in Fig. 8. To show
the non-propagation region in this graph, we write the disper-
sion relation (14) in the form of ν2φ/c

2 as

ν2φ

c2 =
{
εDNG (ω)µDNG (ω) − (cnπ/ωa)2

}−1
(41)

where, ν2φ is the square of phase velocity and c is the speed of
light in vacuum. Fig. 8 is a plot of dispersion relation (14) for

normalized squared phase velocity
ν2φ
c2 versus ω for a fix value

of plate separation (i.e., a = 3 × 10−3 m) and for different num-
ber of modes (i.e., n = 1, 2, 3, . . .). The graph shows that the
ν2φ
c2 < 0 for the whole frequency band of a DNG-MTM, there-
fore, electromagnetic waves cannot propagate in a parallel-plate
waveguide filled with a DNG-MTM.

4. Conclusion

In this research work, we analyze the electromagnetic wave
propagation in a parallel-plate waveguide filled with a (a) con-
ventional (linear, homogeneous and isotropic) dielectric medium
(b) metamaterials. In this connection, we derived the field vec-
tors and dispersion relations for the TE and TM wave modes
for both cases. The dispersion characteristics of the waves are
obtained by the numerical analysis of the dispersion relation.
It is seen from the graph between permittivity and permeabil-
ity versus the propagation frequency that the frequency band
for the existence of ENG-MTM exists between 2.75 × 109 Hz
and 12×109 Hz .The frequency range for DNG-MTM in which

both permittivity and permeability have simultaneously nega-
tive values exists between 4 × 109 Hz and 6 × 109 Hz. Further,
The frequency band for the existence of MNG-MTM is between
3.5 × 109 Hz and 10 × 109 Hz.

For a PPWG filled with a conventional dielectric medium,
the dispersion curves show propagation of electromagnetic waves
in upper region of microwave band but no propagation is seen
in lower region within the microwave frequency range. Further,
for a PPWG filled with a conventional dielectric medium, in-
creasing the thickness between the plates of parallel-plate waveg-
uide the propagation of electromagnetic waves also increases
and vice versa. It is concluded that the propagation character-
istics of electromagnetic are sensitive to the number of modes
and the thickness of the waveguide. For a PPWG filled with
a DNG-MTM, the frequency at which propagation may occur,
does not exist in the existence band of a DNG-MTM for the
value of PPWG thickness a < 10mm, whereas for very large
plate separations, electromagnetic waves may propagate within
the existence range of a DNG-MTM. Further, it is observed
that electromagnetic waves cannot propagate in a parallel-plate
waveguide filled with an MNG or ENG-MTM. Within the fre-
quency bands for the existence of these MTMs, the dispersion
relation does not show the region of propagation.

References

[1] N. Engheta, R. W. Ziolkowski, A positive future for double-negative
metamaterials, IEEE Transactions on microwave theory and techniques
53 (4) (2005) 1535–1556.

[2] N. Engheta, R. W. Ziolkowski, Metamaterials: physics and engineering
explorations, John Wiley & Sons, 2006.

[3] K. Y. Kim, Comparative analysis of guided modal properties of double-
positive and double-negative metamaterial slab waveguides., Radioengi-
neering 18 (2).

[4] M. Lapine, I. V. Shadrivov, Y. S. Kivshar, Colloquium: nonlinear meta-
materials, Reviews of Modern Physics 86 (3) (2014) 1093.

[5] G. V. Eleftheriades, K. G. Balmain, Negative-refraction metamaterials:
fundamental principles and applications, John Wiley & Sons, 2005.

[6] Y. Xiang, X. Dai, S. Wen, D. Fan, Properties of omnidirectional gap and
defect mode of one-dimensional photonic crystal containing indefinite
metamaterials with a hyperbolic dispersion, Journal of Applied Physics
102 (9) (2007) 093107.

[7] Y. Xiang, X. Dai, S. Wen, Omnidirectional gaps of one-dimensional pho-
tonic crystals containing indefinite metamaterials, JOSA B 24 (9) (2007)
2033–2039.

[8] W. Zhang, Y. Chen, P. Hou, J. Shi, Q. Wang, Transformation of nonlinear
behaviors: from bright-to dark-gap soliton in a one-dimensional photonic
crystal containing a nonlinear indefinite metamaterial defect, Physical Re-
view E 82 (6) (2010) 066601.

[9] J. Yao, X. Yang, X. Yin, G. Bartal, X. Zhang, Three-dimensional
nanometer-scale optical cavities of indefinite medium, Proceedings of the
National Academy of Sciences 108 (28) (2011) 11327–11331.

[10] K. Kim, Y. Cho, Comparing guided modal properties of surface
waves along single-and double-negative indexed slab waveguides, Opto-
Electronics Review 18 (2010) 388–393.

[11] Y. Xiang, X. Dai, S. Wen, Negative and positive goos–hänchen shifts of a
light beam transmitted from an indefinite medium slab, Applied Physics
A 87 (2007) 285–290.

[12] Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, D. Tang, Critical coupling
with graphene-based hyperbolic metamaterials, Scientific reports 4 (1)
(2014) 5483.

[13] Y. Xiang, X. Dai, S. Wen, D. Fan, Independently tunable omnidirectional
multichannel filters based on the fractal multilayers containing negative-
index materials, Optics letters 33 (11) (2008) 1255–1257.



Burhan Zamir et. al.,| Research Prospects in Natural Sciences Vol. 1, Issue 1, (2023) 23–29 29

[14] Y. Xiang, J. Guo, X. Dai, S. Wen, D. Tang, Engineered surface bloch
waves in graphene-based hyperbolic metamaterials, Optics Express 22 (3)
(2014) 3054–3062.

[15] Y. G. Smirnov, D. V. Valovik, Guided electromagnetic waves propagat-
ing in a plane dielectric waveguide with nonlinear permittivity, Physical
Review A 91 (1) (2015) 013840.

[16] V. G. Veselago, The electrodynamics of substances with simultaneously
negative values of ε and µ, Soviet Physics Uspekhi 10 (4) (1968) 509.

[17] J. B. Pendry, A. Holden, W. Stewart, I. Youngs, Extremely low frequency
plasmons in metallic mesostructures, Physical review letters 76 (25)
(1996) 4773.

[18] J. B. Pendry, A. Holden, D. Robbins, W. Stewart, Low frequency plas-
mons in thin-wire structures, Journal of Physics: Condensed Matter
10 (22) (1998) 4785.

[19] J. B. Pendry, A. J. Holden, D. J. Robbins, W. Stewart, Magnetism from
conductors and enhanced nonlinear phenomena, IEEE transactions on mi-
crowave theory and techniques 47 (11) (1999) 2075–2084.

[20] D. R. Smith, W. J. Padilla, D. Vier, S. C. Nemat-Nasser, S. Schultz, Com-
posite medium with simultaneously negative permeability and permittiv-
ity, Physical review letters 84 (18) (2000) 4184.

[21] R. A. Shelby, D. R. Smith, S. Schultz, Experimental verification of a neg-
ative index of refraction, science 292 (5514) (2001) 77–79.

[22] A. Alù, N. Engheta, Guided modes in a waveguide filled with a pair of

single-negative (sng), double-negative (dng), and/or double-positive (dps)
layers, IEEE Transactions on Microwave Theory and Techniques 52 (1)
(2004) 199–210.

[23] H. Jiang, H. Chen, H. Li, Y. Zhang, J. Zi, S. Zhu, Properties of one-
dimensional photonic crystals containing single-negative materials, Phys.
Rev. E 69 (2004) 066607.

[24] B. Zamir, R. Ali, Wave propagation in parallel-plate waveguides filled
with nonlinear left-handed material, Chinese Physics B 20 (1) (2011)
014102.

[25] M. Shen, S. Pang, J. Zheng, J. Shi, Q. Wang, Nonlinear surface polaritons
in indefinite media, JOSA B 29 (2) (2012) 197–202.

[26] S. R. Entezar, Frequency tuneable single-negative bistable heterostruc-
ture, Progress In Electromagnetics Research M 14 (2010) 33–44.

[27] W.-H. Lin, C.-J. Wu, S.-J. Chang, Angular dependence of wave reflection
in a lossy single-negative bilayer, Progress In Electromagnetics Research
107 (2010) 253–267.

[28] A. Namdar, S. R. Entezar, H. Rahimi, H. Tajalli, Backward tamm states
in 1d single-negtaive metamaterials photonic crystals, Progress In Elec-
tromagnetics Research Letters 13 (2010) 149–1159.

[29] I. V. Shadrivov, A. A. Sukhorukov, Y. S. Kivshar, A. A. Zharov, A. D.
Boardman, P. Egan, Nonlinear surface waves in left-handed materials,
Physical Review E 69 (1) (2004) 016617.


	Introduction
	Theoretical analysis
	The dispersion relation
	Case of MNG-MTM
	Case of ENG-MTM
	Case of conventional PPWG

	Numerical Analysis
	Frequency bands for metamaterials
	Dispersion characteristics

	Conclusion

