

Research Article

A DFT STUDY OF STRUCTURAL AND ELECTRONIC PROPERTIES OF SPINEL FERRITE CdFe_2O_4

Muhammad Aslam Dar^{a,b,*}, Farhan Ahmad^{a,c}, Muhammad Ashraf^{a,c}, Amin Ur Rehman^b

^a*Higher Education Department, Government of Punjab, Lahore 54000, Pakistan.*

^b*University of the Lahore, Lahore 54000, Punjab, Pakistan.*

^c*Department of Solid State Physics, University of the Punjab, Lahore 54000, Pakistan.*

Abstract

A density functional theory (DFT) study of structural and electronic properties of Spinel ferrite CdFe_2O_4 is done here by using computer code WIEN2k. Structural characteristics like lattice constant, bulk modulus, ground state volume and ground state energy are determined by using exchange correlation approximations LDA, PBE-GGA and WC-GGA. Lattice constant measured by PBE-GGA is agreed well with the experimental results. All three types of approximations reveal that CdFe_2O_4 has simple cubic structure. Density of States (DOS) and band structure are determined by using Full Potential Linearized Augmented Plane Wave (FP-LAPW) method within generalized gradient approximation PBE-GGA. The values of lattice constant, ground state energy and bulk modulus using the approximations PBE-GGA are 8.7030 Å-33770.2312 Ry and 168.7308 GPa, respectively. Total density of states (TDOS) and partial density of states (PDOS) are determined for both spin-up and spin-down. Energy band gap (1.2 eV) shows that Cadmium Ferrite has half metallic nature and has indirect band gap. Cadmium Ferrite is low gap semiconductors and widely used in electronics such as in magnetic and magneto-optic recording devices and in data storage devices. This work provides first comprehensive DFT study to understand the properties of Cadmium Ferrite (CdFe_2O_4) with LDA, PBE-GGA and WC-GGA.

© 2023 Published by Government Graduate College, Township, Lahore

Keywords:

DFT, DOS, PDOS, cadmium ferrite.

1. Introduction

Ferrites are generally has resistivity in between those of conductors and insulators. Electronic properties of ferrites have made them more attractive and interesting for both scientists and engineers. These properties of ferrites have made them able to play an important role in manufacturing of magnetic switches, transformer cores, microwave devices, micro electric devices, sensors, electromagnetic circuits and in the field of medicines [1, 2]. General Formula for spinel ferrites is MFe_2O_4 , here M is a divalent metal ion e.g., Magnesium ($_{12}\text{Mg}$), Manganese ($_{25}\text{Mn}$), Nickel ($_{28}\text{Ni}$), Copper ($_{29}\text{Cu}$), Cadmium ($_{48}\text{Cd}$) etc., Fe is cation (+ve ion) and O is an anion (-ve ion). Spinel ferrites have simple cubic structure, their space group is 227 ($\text{Fd}\bar{3}\text{m}$) [3]. Lattice constant for spinel ferrites is about 8.38 Å and their curie temperature is 668 K. Resistivity of spinel ferrites is about $1 \times 10^6 \Omega \text{ m}$. The crystal structure of spinel ferrites

is cubic and has two interstitial sites called tetrahedral site and octahedral site. Each unit cell of spinel ferrites consist of eight units (cube) and therefore written as $\text{M}_8\text{Fe}_{16}\text{O}_{32}$. Bragg and Nishikawa were the first who determined the cubic structure of spinel ferrites [4].

Among all types of ferrites spinel-ferrites are very important because of their wide range of applications in many fields. Spinel ferrites are very useful materials for magnetic recording media and computer memory devices. They are also used in components of magnetic switches, electronic filters and microwave devices. For memory and switching devices they are used in form of thin films. They are extensively used in manufacturing of rod antenna and radio frequency coil [5, 6]. Spinel ferrites are used to make sensors which have definite and sharp Curie temperature and can be used for temperature control. These ferrites can also be used for humidity sensitivity, they have large surface area, open pore formed on bulk surface and have high surface charge density [7, 8].

CdFe_2O_4 is an important spinel ferrite, it has many applica-

*Corresponding Author:

aslamdar83@gmail.com (Muhammad Aslam Dar)

tions in bulk form as well as in nanoparticle form. CdFe_2O_4 is a semiconductor oxide. It has an ability to resolve the many environmental and energy problems. CdFe_2O_4 can use solar energy to eliminate serious pollutants in air as well as in water, it can also effectively detect toxic gases in atmosphere of Earth and can protect the living organisms from harmful impacts of various pollutants present in our surrounding[9, 10]. CdFe_2O_4 is a normal spinel ferrite and like other ferrites it also shows magnetic properties[11]. CdFe_2O_4 in bulk form shows ferromagnetic properties but below 10K it shows antiferromagnetic behavior [12]. Cadmium ferrite (CdFe_2O_4) has a number of electronic, magnetic, catalytical and electrical switching properties. CdFe_2O_4 has cubic structure belonging to space group 227 i.e. Fd3m. In Cadmium ferrite Cd is tetrahedral cation, Fe is octahedral cation, here the unit cell dimensions (Lattice Constant) $a = 8.7050\text{\AA}$, anion positional parameter $u_{\text{calc}} = 0.2685\text{\AA}$, tetrahedral bond length $R_{\text{tet}} = 0.780\text{\AA}$, octahedral bond length $R_{\text{oct}} = 0.645\text{\AA}$, electronegativity of tetrahedral cation $\chi_{\text{tet}} = 1.690$, electronegativity of octahedral cation $\chi_{\text{oct}} = 1.830$ [13]. In bulk form CdFe_2O_4 has X-ray density $\rho = 5.81 \times 10^3 \text{ Kg m}^{-3}$, force constant $K = 1.00 \times 10^2 \text{ Nm}^{-1}$, bulk modulus $B = 206 \text{ GPa}$, young modulus $E = 185 \text{ GPa}$, rigidity modulus $G = 68 \text{ GPa}$, Poisson's ratio $\sigma = 0.35$, Debye temperature $\theta = 499 \text{ K}$ [14]. Experimentally it is noted that Cadmium ferrite has conductivity in between the conductors and insulators, at standard temperature the experimental values of band energies for CdFe_2O_4 are given as, conduction band energy $\text{ECB} = 0.55 \text{ eV}$, valance band energy $\text{EVB} = 2.85 \text{ eV}$, energy band gap $\text{Eg} = 2.3 \text{ eV}$, these values show that Cadmium ferrite is electrically semiconductor material [15]. This research is an attempt to find out structural and electronic properties of spinel ferrite CdFe_2O_4 based on DFT and then compares them with already existing experimental results.

2. Materials and Methods

Density Functional Theory is the theoretical tool to investigate solids by finding the density of electrons in the material. DFT is an ab-initio method to solve the Schrodinger equation for many body problems. In this theoretical technique a number of suitable approximations are made to solve the Schrodinger equation and an attempt is made to reach to the reasonable suitable results of the given materials. The first step to solve Schrodinger wave equation for complex matter is the Born-Oppenheimer approximation. This approximation separates the motion of nuclei and the electrons. Hartree proposed that Schrodinger equation for many electron system can be rewrite as a single-electron equation, and this electron is considered as moving in a mean potential from all the other electrons. According to Hartree-Fock approximation the exact wave function of many-body system needs to be anti-symmetric function by exchange of electrons. In Hartree-Fock technique the exchange is treated exactly but the correlation is ignored [16, 17].

DFT is based on charge density of electrons rather than wave function of electrons, i.e., $E(\Psi_0) = E(\rho_0)$. DFT is a successful and an efficient technique to investigate a solid. It is the most reliable method to find the properties of condensed matter.

It is the theory which reduced the many-particle Schrodinger equation to single-body independent Schrodinger equation. Modern DFT found its roots in 1964 AD by Hohenberg and Kohn. They gave two landmarks theorems which provided a base to investigate a material theoretically by using DFT [18]. Kohn and Sham played an important role to make DFT more suitable to measure the exact value of electron density. By applying the Kohn-Sham ideas the single electrons equations are formed. These single electrons Schrodinger equations are known as Kohn-Sham equations. i.e.

$$\widehat{H}_{KS} \Phi_i = \left[-\frac{1}{2} \nabla^2 + V_{eff} [\rho(\vec{r})] \right] \Phi_i (\vec{r}) \quad (1)$$

Here \widehat{H}_{KS} is single electron Hamiltonian and $V_{eff}(r)$ is effective potential formed by all other electrons in which single electron moves. This effective potential can be written as,

$$V_{eff} [\rho(\vec{r})] = V_{ext} (\vec{r}) + \widehat{V}_H [\rho(\vec{r})] + V_{xc} [\rho(\vec{r})] \quad (2)$$

The Kohn-Sham equations are needed to be solved self-consistently. An initial charge density is supposed and then by using this initial guessed the Hamiltonian for this charge density is set up and then diagonalized the resulting approximate Hamiltonian. The main purpose of Kohn-Sham theory is to find the exact results for many-body system by making reasonable approximations to calculate $\frac{E_{xc}}{V_{xc}}$ [19].

Here in these calculations we used three different approximations LDA, PBE-GGA and WC-GGA to find the structural and electronic properties of CdFe_2O_4 . WIEN2k is a computer software which is being used here, WIEN2k works on the bases of DFT [20, 21]. WIEN2k is an excellent scheme to find out the structural, electrical, magnetic, optical and elastic properties of solid materials. The computer code WIEN2k is followed the method of Full Potential Augmented Plane-Wave (APW) + local orbitals (Lo). Here in this method the crystal unit cell is divided into two main regions, one is non-overlapping Muffin-Tin sphere and the second is the remaining interstitial space. WIEN2k is an all electrons method, it can made calculations for valance electrons and also for the core electrons [22].

3. Results and Discussion

3.1. Structural Properties

Structural properties of Spinel ferrite CdFe_2O_4 is determined here by using Density Functional Theory (DFT), structural properties is characterized by finding some important parameters such as lattice constant, bulk modulus, minimum volume, minimum energy and the pressure derivative of bulk modulus. These structural parameters are determined at different potentials by using LDA, PBE-GGA and WC-GGA. To determine the ground state energy for these two compounds, their total energy is minimized at various volumes by using the Murnaghan's equation of state [23] which can be given as,

$$E(V) = E_0 + \frac{9V_0 B_0}{16} \left[\left\{ \left(\frac{V_0}{V} \right)^{\frac{2}{3}} - 1 \right\}^2 B'_0 + \left\{ \left(\frac{V_0}{V} \right)^{\frac{2}{3}} - 1 \right\}^2 \left\{ 6 - 4 \left(\frac{V_0}{V} \right)^{\frac{2}{3}} \right\} \right] \quad (3)$$

Here B'_o is the pressure derivative of bulk modulus B_o and it is given as,

$$B'_o = \frac{dB_o}{dP} \quad (4)$$

Where E_o is the minimum energy and V_o is the minimum volume. By taking minimum energy the graphs are drawn between total energy and the volume for all three approximations i.e. LDA, PBE-GGA and WC-GGA. In each case approximations having values of structural parameters nearly equal to that of experimental values are selected. Our calculated structural parameters by using PBE-GGA are completely agreed with experimental values. Atomic positions of cadmium (Cd), iron (Fe), and oxygen (O) in Cadmium ferrite which are used to calculate the optimized lattice constants are given in table 1. Each unit cell of optimized CdFe_2O_4 crystal is cubical belonging to space group 227 (Fd3m), cubical crystal structure of CdFe_2O_4 is shown in figure 1.

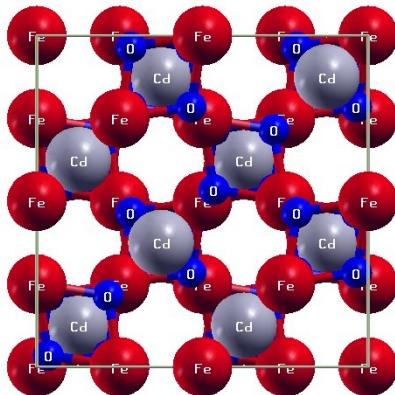


Figure 1: Crystal structure of CdFe_2O_4

By using Local Density Approximation (LDA) calculated ground state energy is $E_o = -33725.3212$ Ry, minimum optimum volume is $V_o = 1034.4154$ a.u3, the stiffness of the material (Bulk Modulus) is $B = 214.1811$ GPa, the pressure derivative of bulk modulus is $BP = 5.0000$. Calculated Lattice Parameters by LDA and relative % error by comparing with experimental data is shown table 2. Optimized curve volume vs energy for CdFe_2O_4 by using LDA is shown in figure 2.

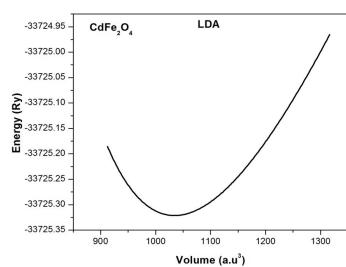


Figure 2: Volume vs Energy Plot for CdFe_2O_4 within LDA

By using PBE-GGA calculated ground state energy is $E_o = -33770.2312$ Ry, minimum optimum volume is $V_o = 1112.1083$

a.u3, the stiffness of the material (Bulk Modulus) is $B = 168.7308$ GPa, the pressure derivative of bulk modulus is $BP = 5.0000$. Calculated Lattice Parameters by PBE-GGA and relative % error by comparing with experimental data is shown table 3. Optimized curve volume vs energy for CdFe_2O_4 by using PBE-GGA is shown in figure 3.

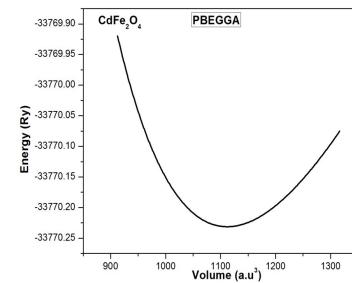


Figure 3: Volume vs Energy Plot for CdFe_2O_4 within PBE-GGA

By using WC-GGA calculated ground state energy is $E_o = -33762.4552$ Ry, minimum optimum volume is $V_o = 1071.3152$ a.u3, stiffness of the material (Bulk Modulus) is $B = 181.9959$ GPa, the pressure derivative of bulk modulus is $BP = 5.0000$. Calculated Lattice Parameters by WC-GGA and relative % error by comparing with experimental data is shown table 4. Optimized curve volume vs energy for CdFe_2O_4 by using WC-GGA is shown in figure 4.

Table 1: Atomic positions for CdFe_2O_4

Atoms	X	Y	Z
Cd	0.125	0.125	0.125
Fe	0.5	0.5	0.5
O	0.2847	0.2847	0.2847

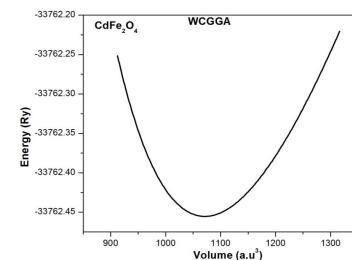
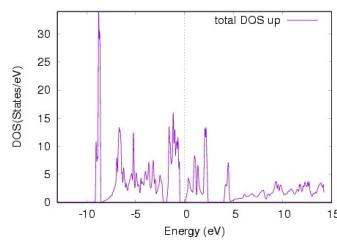
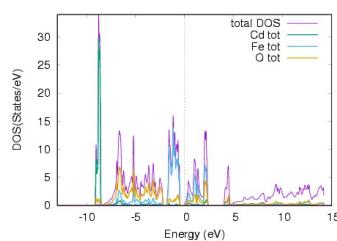


Figure 4: Volume vs Energy Plot for CdFe_2O_4 within WC-GGA

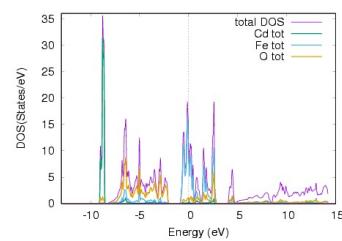
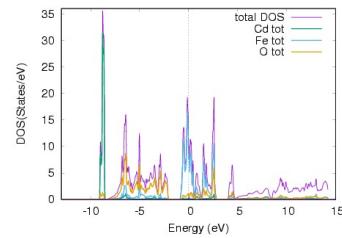
3.2. Electronic Properties

In complex matter physics the density of states (DOS) of a material are described as, “number of states per interval of



Table 2: Calculated Lattice Parameters by LDA for CdFe_2O_4

Lattice parameter	Calculated values	Experimental Data [14]	% Error
Lattice Constant $a_0(\text{\AA})$	8.4954	8.7000	2.35
Minimum Volume $V_0(a.u^3)$	1034.4154	1033.215	0.12
Minium energy $E_0(\text{Ry})$	-33725.3212	-33720.416	0.014
Bulk Modulus B (GPa)	214.1811	206	3.97
BP	5.000	5.000	0.0

Table 3: Calculated Lattice Parameters by PBE-GGA for CdFe_2O_4



Lattice parameter	Calculated values	Experimental Data [14]	% Error
Lattice Constant $a_0(\text{\AA})$	8.7030	8.7000	0.034
Minimum Volume $V_0(a.u^3)$	1112.1083	1033.215	7.6
Minium energy $E_0(\text{Ry})$	-33770.2312	-33720.416	0.15
Bulk Modulus B (GPa)	168.7308	206	18.09
BP	5.000	5.000	0.0

energy at each energy level available to the occupied". In crystalline structure of a material electron waves can propagate only in one direction i.e. only certain states are permitted. Therefore it can be possible that in any specific energy level a number of states are available for occupation and on another energy level it can also be possible that no states are available. In three dimensional system the units of DOS is Energy-1 Volume-1 , in two dimensional system units of DOS is Energy-1 Area-1 , in one dimensional system the units of DOS is Energy-1 Length-1 [24].

Figure 5: TDOS of CdFe_2O_4 for up spin within PBE-GGAFigure 6: TDOS of CdFe_2O_4 for down spin within PBE-GGA

We computed total density of states (TDOS) and partial density of states (PDOS) for CdFe_2O_4 crystal by using exchange correlation approximation PBE-GGA. Total density of states

for spin up and spin down are shown in figures 5 and 6 respectively. TDOS for spin up shows that band gap calculated by PBE-GGA corresponds to three parts in valance band of energy range -9.2 eV -8.4 eV, -8.2 eV 3.0 eV and -1.8 eV -0.4 eV.

Figure 7: PDOS of CdFe_2O_4 for up spin within PBE-GGAFigure 8: PDOS of CdFe_2O_4 for down spin within PBE-GGA

In valance band region the energy range -9.2 eV -8.4 eV has DOS value 38, -8.2 eV 3.0 eV has DOS value 13.5 and -1.8 eV -0.4 eV has DOS value 16. Highest valance band peak occurs in region -9.2 eV -8.4 eV. Total density of states (TDOS) of CdFe_2O_4 for up-spin within PBE-GGA shows that conduction band corresponds to 0 eV 2.5 eV, 4.2 eV 4.8 eV and 5.0 eV 14.2 eV. In conduction band region the energy range 0 eV 2.5 eV has DOS value 13.8, energy range 4.2 eV 4.8 eV has DOS value 7.6 and 5.0 eV 14.2 eV has DOS value

Table 4: Calculated Lattice Parameters by WC-GGA for CdFe_2O_4

Lattice parameter	Calculated values	Experimental Data [14]	% Error
Lattice Constant $a_0(\text{\AA})$	8.5953	8.7000	1.20
Minimum Volume $V_0(a.u^3)$	1071.3152	1033.215	3.7
Minimum energy $E_0(\text{Ry})$	-33762.2312	-33720.416	0.12
Bulk Modulus B (GPa)	181.9959	206	11.6
BP	5.000	5.000	0.0

4. Highest peak in conduction band region is occurred between 0 eV – 2.5 eV. Partial density of states (PDOS) of Cadmium Ferrite (CdFe_2O_4) for spin up and spin down within PBE-GGA are shown in figures 7 and 8 respectively.

PDOS for spin up shows that on valence band region the contribution made by Cadmium (Cd) is from -9.2 eV to -8.4 eV at DOS value 30 and Cd contributes on conduction band side from 0 eV to 2.5 eV at DOS value 1.2. Contribution made by Fe in valence band region is from -7.6 eV to -2.2 eV at DOS value 3 and from -1.8 eV to -0.4 eV at DOS value 14. Fe has its contribution in conduction band region from 0 eV to 2.5 eV at DOS value 8. Oxygen (O) contribute from -9.2 eV to -8.4 eV at DOS value 1.5, from -8.0 eV to -3.0 eV at DOS value 6.5 and from -1.8 eV to 0.4 eV at DOS value 2 in valence band region. O made contribution from 0 eV to 2.5 eV at DOS value 4.5 and from 4.2 eV to 4.8 eV at DOS value 2 in conduction band region.

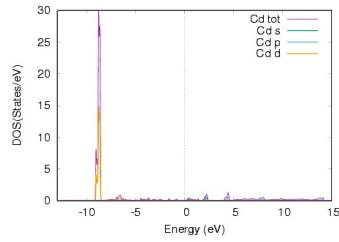


Figure 9: PDOS of Cd-atom for up spin within PBE-GGA

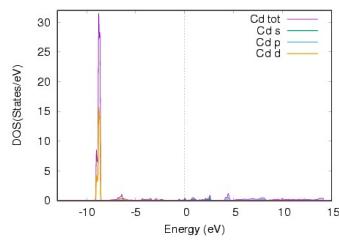


Figure 10: PDOS of Cd-atom for down spin within PBE-GGA

In total density of states (TDOS) the highest peak in valence band region with DOS value 38 is mainly contributed by Cadmium Cd-4d. In valence band region from -8.2 eV to 3.0 eV at DOS value 13.5 is contributed by Oxygen O-2p and similarly third range in valence band from -1.8 eV to 0.4 eV with DOS

value 16 is mainly contributed by Fe-3d. In conduction band the highest peak with DOS value 13.8 from 0 eV to 2.5 eV is contributed by both Fe-3d and O-2p. Partial density of states (PDOS) for Cd, Fe, and Oxygen with spin up and spin down are shown in figures 9–14.

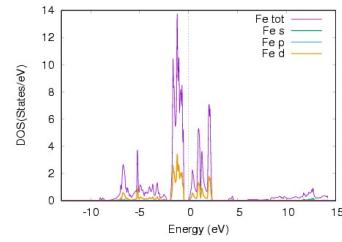


Figure 11: PDOS of Fe-atom for up spin within PBE-GGA

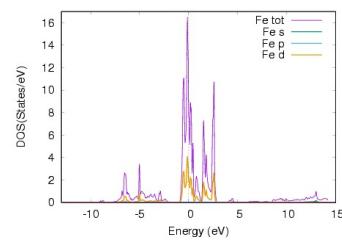


Figure 12: PDOS of Fe-atom for down spin within PBE-GGA

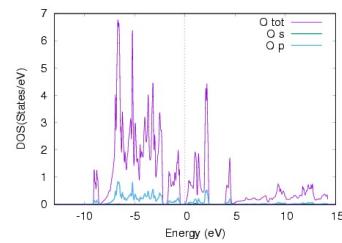


Figure 13: PDOS of O-atom for up spin within PBE-GGA

Band gap calculations for CdFe_2O_4 is calculated by using the exchange correlation approximation PBE-GGA between the energy range -10.0 eV to 8.0 eV. Band gap for CdFe_2O_4 for up-spin and down-spin within PBE-GGA are shown in figures 15

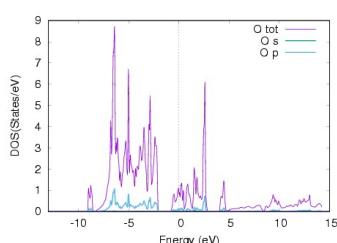


Figure 14: PDOS of O-atom for down spin within PBE-GGA

and 16 respectively. In our calculations it is found that Cadmium Ferrite has indirect band gap structure. Band structure of CdFe_2O_4 for up-spin shows a band gap of about 1.2 eV but for down-spin valance band and conduction band overlap each other showing zero band gap. This predicted that Cadmium Ferrite (CdFe_2O_4) is semiconductor in nature. At 0°C or at 273K experimental value for CdFe_2O_4 band gap is about 2.3 eV [15].

4. Conclusion

WIEN2k computer code is used here, it applies the Full Potential Linearized Augmented Plane Wave (FP-LAPW) method within DFT. Structural parameters such as lattice constant, bulk modulus, ground state volume and ground state energy are determined here by using three exchange correlation potentials LDA, PBE-GGA and WC-GGA. Results obtained here by using DFT are agreed with experimental results especially with PBE-GGA. These calculations show that CdFe_2O_4 has simple cubic structure and here Cadmium (Cd) is tetrahedral cations, and Iron (Fe) is octahedral cation. The values obtained by PBE-GGA are as follows; lattice constant 8.7030 Å, minimum volume 1112.1083 a.u^3 , minimum energy E_{c} -33770.2312 Ry and bulk modulus B 168.7308 GPa. PBE-GGA is used here to find the total density of states (TDOS), partial density of states (PDOS) and electronic band structure for both spin-up and spin-down. Electronic band structure for Cadmium Ferrite is indirect band gap and shows some band gap for spin-up (of about 1.2 eV), but for spin-down valance band and conduction band overlap each other (zero band gap). This shows that CdFe_2O_4 has semi metallic nature. This is the first ab-initio study of electronic band structure of spinel ferrite CdFe_2O_4 with PBE-GGA.

References

- [1] R. Bhowmik, N. Naresh, Structure, ac conductivity and complex impedance study of co_3o_4 and fe_3o_4 mixed spinel ferrites, *International journal of Engineering, science and technology* 2 (8).
- [2] I. Chircinas, Soft magnetic nanocrystalline powders produced by mechanical alloying routes, *Journal of Optoelectronics and Advanced Materials* 8 (2) (2006) 439.
- [3] E. Whittaker, (rwg) wyckoff crystal structures. vol. 2. 2nd edn, new york, london, sydney (interscience publishers), 1964. viii+ 588 pp. illus. price: 180s., *Mineralogical magazine and journal of the Mineralogical Society* 35 (271) (1965) 554–555.
- [4] W. H. Bragg, XXX. the structure of the spinel group of crystals, *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science* 30 (176) (1915) 305–315.
- [5] Y. He, S. Wang, C. Li, Y. Miao, Z. Wu, B. Zou, Synthesis and characterization of functionalized silica-coated fe_3o_4 superparamagnetic nanocrystals for biological applications, *Journal of Physics D: Applied Physics* 38 (9) (2005) 1342.
- [6] M. Meshram, N. K. Agrawal, B. Sinha, P. Misra, Characterization of m-type barium hexagonal ferrite-based wide band microwave absorber, *Journal of Magnetism and Magnetic Materials* 271 (2-3) (2004) 207–214.
- [7] R. Kotnala, J. Shah, B. Singh, S. Singh, S. Dhawan, A. Sengupta, et al., Humidity response of li-substituted magnesium ferrite, *Sensors and Actuators B: Chemical* 129 (2) (2008) 909–914.
- [8] S. L. C. J. M. H. M. S. Pederson, S. Morup, *Journal of physics: condensed matter* 9 (71).
- [9] E. Serrano, G. Rus, J. Garcia-Martinez, Nanotechnology for sustainable energy, *Renewable and Sustainable Energy Reviews* 13 (9) (2009) 2373–2384.
- [10] S. Sun, X. Chang, L. Dong, Y. Zhang, Z. Li, Y. Qiu, W18o49 nanorods decorated with ag/agcl nanoparticles as highly-sensitive gas-sensing material and visible-light-driven photocatalyst, *Journal of Solid State Chemistry* 184 (8) (2011) 2190–2195.
- [11] H. H. Hamideh, J. Ho, S. Oliver, R. Willey, G. Oliveri, G. Busca, Magnetic properties of partially-inverted zinc ferrite aerogel powders, *Journal of Applied Physics* 81 (4) (1997) 1851–1857.
- [12] V. Šepelák, K. Tkáčová, A. Rykov, Rietveld analysis of mechanically activated powdered zinc ferrite, *Crystal Research and Technology* 28 (1) (1993) 53–56.
- [13] R. J. Hill, J. R. Craig, G. Gibbs, Systematics of the spinel structure type, *Physics and chemistry of minerals* 4 (4) (1979) 317–339.
- [14] R. Desai, R. Mehta, R. Upadhyay, A. Gupta, A. Praneet, K. Rao, Bulk magnetic properties of cdfe_2o_4 in nano-regime, *Bulletin of Materials Science* 30 (2007) 197–203.
- [15] Y. Xu, M. A. Schoonen, The absolute energy positions of conduction and valence bands of selected semiconducting minerals, *American mineralogist* 85 (3-4) (2000) 543–556.
- [16] S. Cottenier, et al., Density functional theory and the family of (I) apw-methods: a step-by-step introduction, *Instituut voor Kern-en Stralingsfysica, KU Leuven, Belgium* 4 (0) (2002) 41.
- [17] [\[Link\]](http://en.wikipedia.org/wiki/Hartree-Fock).
URL <http://en.wikipedia.org/wiki/Hartree-Fock>
- [18] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, *Physical review* 136 (3B) (1964) B864.
- [19] M. Städele, M. Moukara, J. Majewski, P. Vogl, A. Görling, Exact exchange kohn-sham formalism applied to semiconductors, *Physical Review B* 59 (15) (1999) 10031.
- [20] P. Blaha, K. Schwarz, G. K. Madsen, D. Kvasnicka, J. Luitz, et al., wien2k, An augmented plane wave+ local orbitals program for calculating crystal properties 60 (2001) 1–302.
- [21] K. Schwarz, P. Blaha, Solid state calculations using wien2k, *Computational Materials Science* 28 (2) (2003) 259–273.
- [22] P. E. Blöchl, O. Jepsen, O. K. Andersen, Improved tetrahedron method for brillouin-zone integrations, *Physical Review B* 49 (23) (1994) 16223.
- [23] F. D. Murnaghan, On the theory of the tension of an elastic cylinder, *Proceedings of the National Academy of Sciences USA* 30 (12) (1944) 5390.
- [24] F. Wang, D. P. Landau, Efficient, multiple-range random walk algorithm to calculate the density of states, *Physical review letters* 86 (10) (2001) 2050.